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SUMMARY

A high-order accurate, �nite-di�erence method for the numerical solution of incompressible �ows is
presented. This method is based on the arti�cial compressibility formulation of the incompressible
Navier–Stokes equations. Fourth- or sixth-order accurate discretizations of the metric terms and the
convective �uxes are obtained using compact, centred schemes. The viscous terms are also discretized
using fourth-order accurate, centred �nite di�erences. Implicit time marching is performed for both
steady-state and time-accurate numerical solutions. High-order, spectral-type, low-pass, compact �lters
are used to regularize the numerical solution and remove spurious modes arising from unresolved scales,
non-linearities, and inaccuracies in the application of boundary conditions. The accuracy and e�ciency
of the proposed method is demonstrated for test problems. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In many practical applications, such as �ows over hydrofoils, wind-turbine blades, and air-
craft wings during takeo� and landing the performance is dramatically a�ected by essentially
incompressible separated �ow. Furthermore, the development of a�ordable, high-speed trains
and naval transportation with potential to commercial applications needs detailed �ow�eld
information because the harsh environment of such endeavors imposes daunting mechanical,
structural, and propulsive loads. For these applications, the �ow is also incompressible, how-
ever, the di�culty of full-scale testing constrains e�orts to evolve new concepts. Therefore
application of advanced, e�cient, and accurate methods for the numerical solution of the
incompressible �ow equations is required.
The incompressible-�ow equations include pressure in a non-time-dependent form since the

continuity equation has a non-evolutionary character. As a result, di�culties arise with the
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numerical solution of incompressible-�ow equations in coupling changes of the computed ve-
locity �eld with changes in the pressure �eld while satisfying the continuity equation. The
stream function=vorticity formulation, which is straightforward to apply for two-dimensional
�ows, does not present the same di�culties. Numerical solutions based on the primitive vari-
able formulation are obtained either with fractional time-step methods [1–3] or by solving a
Poisson equation for pressure [4]. High-order accurate numerical solutions of incompressible
�ows using primitive variable formulations were obtained in the past using fractional-step
techniques either with �nite-di�erence discretizations [5] or with spectral element discretiza-
tions [6, 7].
The present paper is focused on addressing the crucial issue of accurate and e�cient in-

compressible �ow computation by developing, evaluating, and demonstrating the e�ciency of
a new high-order algorithm for incompressible �ows. The numerical solution of incompress-
ible �ows is based on the arti�cial compressibility or pseudocompressibility formulation of
the incompressible Navier–Stokes equations [8]. The numerical algorithm is based on a high-
order accurate in space, centred, �nite-di�erence method. The non-linear convective �uxes are
evaluated using fourth- or sixth-order accurate compact, central di�erence schemes. Steady
simple �ows may be computed with explicit schemes. For �ows in complex domains and
time-dependent problems, the numerical solution is advanced in time using implicit dual-time-
stepping schemes. In order to eliminate spurious modes arising from aliasing errors, non-linear
interactions, and inaccuracies from the application of boundary conditions, spectral-type, low-
pass �ltering is used for the computed �ow variables.
The rest of the paper is organized as follows: The governing equations are summarized. The

pseudocompressibility formulation and the time marching schemes are presented. Compact
centred schemes used in combination with spectral-type �lters are outlined. Finally, in the
results section the accuracy and e�ciency of the proposed method is demonstrated for test
problems and �ows of practical interest.

2. GOVERNING EQUATIONS

For �nite-di�erence and �nite-volume structured-grid techniques, the numerical treatment of
�ows in complex geometries is facilitated with the use of generalized non-orthogonal co-
ordinate transformations. These transformations make possible the numerical solution with
body �tted stretched meshes which greatly simplify the speci�cation of the boundary condi-
tions. The transformation of the Navier–Stokes equations from Cartesian (x; y; z) co-
ordinates to generalized non-orthogonal co-ordinates (�; �; �) is

[D]
@Q
@t
+
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@�
+
@G
@�
+
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@�
=
1
Re
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@Fv
@�
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@Gv
@�

+
@Hv
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(1)

where D=diag[0; 1; 1; 1], Q= Jq, J is the Jacobian of the transformation J = @(x; y; z)=@(�; �;
�), q=[p; u; v; w]T is the unknown vector for the pressure, p, and u; v; w are the Cartesian
velocity components. Furthermore, F, G, H are the inviscid �ux vectors, Re is the Reynolds
number, Re=U∞L=�, based on a characteristic length L and a characteristic velocity U∞, and
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Fv, Gv, Hv are the viscous �uxes given by

F= (f��x + g��y + h��z)=J; Fv=(fv��x + gv��y + hv��z)=J

G= (f��x + g��y + h��z)=J; Gv=(fv��x + gv��y + hv��z)=J

H= (f��x + g��y + h��z)=J; Hv=(fv��x + gv��y + hv��z)=J

where �x, �x, �x etc. are the metrics and J the Jacobian of the geometrical transformation,
and f , g, h are the convective �uxes in Cartesian co-ordinates,

f =[u; u2 + p; uv; uw]T; g=[v; vu; v2 + p; vw]T; h=[w;wu; wv; w2 + p]T

and fv, gv, hv are the viscous �ux terms in Cartesian co-ordinates
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Using these de�nitions the non-linear inviscid terms F, G, H can be expressed as
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where U = �xu+�yv+�zw, V = �xu+�yv+�zw, and W = �xu+�yv+�zw are the contravariant
velocity components. Analogous expressions are obtained for the viscous terms.

2.1. Pseudocompressibility formulation

The primary problem with both steady-state and time-accurate solutions of the incompress-
ible �ow equations, Equation (1), is the di�culty of coupling changes in the velocity �eld
with changes in the pressure �eld while satisfying the continuity equation. The arti�cial com-
pressibility or pseudocompressibility method is often used to overcome these di�culties. This
method was initially introduced by Chorin [8] for the solution of steady-state incompressible
�ows, and it was subsequently extended [9] to time-accurate numerical solutions of incom-
pressible �ows. The arti�cial compressibility formulation can be utilized for the solution of
incompressible �ows when a pseudo-time derivative of pressure is added to the continuity
equation. This term directly couples the pressure with velocity and allows the equations to
advance in time by iterating until a divergence-free velocity �eld is obtained at the new time
level. For completeness, the pseudocompressibility formulation and the technique used for
numerical solution are described next.
The arti�cial compressibility or pseudocompressibility formulation is obtained from the orig-

inal incompressible �ow equations, Equation (1), by introducing an additional time derivative
of pressure to the continuity equation as
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Addition of this �ctitious pressure derivative enables full coupling of the continuity with
the momentum equations and signi�cantly facilitates the numerical solution. In Equation (2),
� does not represent physical time; therefore in the momentum equation t is replaced by �,
and the pseudocompressible form of the governing equations is
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In Equation (3), the matrix [D] becomes the identity matrix and as in Equation (1) Q=
[p; u; v; w]T=J is the solution variable vector and F, G, H and Fv, Gv, Hv are the same
inviscid and viscous �ux vectors, respectively.
In these equations, � is referred to as pseudotime which can be considered as a time iteration

parameter. Steady-state incompressible solutions are obtained with the arti�cial compressibility
method by time marching as in the compressible �ow case. The numerical methods for the
solution of the pseudocompressible equations are very similar to the methods used for the so-
lutions of the compressible �ow equations [10]. At convergence, however, the time derivative
of pressure, and consequently the divergence of the velocity, approach zero. The parameter
�, which is referred to as the arti�cial compressibility or pseudocompressibility parameter,
usually takes a value between 1 and 10, but larger values may be required for solutions on
highly stretched grids. Time-accurate solutions of unsteady �ows with the pseudocompress-
ibility formulation with implicit schemes are obtained using dual time-stepping [11, 12] as
shown in the next section.

2.2. Time marching schemes

Time marching of incompressible �ows with the pseudocompressibility formulation becomes
very similar to time-marching used for the compressible �ow calculations. For time-accurate
numerical solutions, the additional constraint of incompressibility must be satis�ed. Therefore,
dual-time stepping schemes introduced in Reference [9] must be combined with fast solvers
such as multigrid and implicit methods.

2.2.1. Explicit methods. Time advancement to a steady-state of inviscid �ows or viscous
�ows in simple domains with isotropic meshes may be obtained with the third- [13] or fourth-
order [14] explicit Runge–Kutta methods. For example, the following third-order accurate
Runge–Kutta method [13] can be used:

Q(1) =Qn +�tR(Qn)

Q(2) = 3
4 Q

n + 1
4 Q

(1) + 1
4 �tR(Q

(1))

Qn+1 = 1
3 Q

n + 2
3 Q

(2) + 2
3 �tR(Q

(2))

(4)

where R represents the right-hand side terms R(Q)= (F − Fv)� + (G −Gv)� + (H −Hv)�. For
time accurate solutions with explicit time-marching methods, an iterative, dual-time-stepping
scheme with or without multigrid acceleration must be used [15]. Numerical solutions of
incompressible �ows with the pseudocompressibility formulations in irregular domains with
highly stretched meshes can be obtained using multigrid acceleration with explicit time march-
ing methods [16].
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2.2.2. Implicit methods. Steady-state and time accurate solutions of complex �ows can be
obtained by using the following second-order accurate, three-time level formula to evaluate
the time derivatives in the momentum equations:

3u(n+1) − 4u(n) + u(n−1)
2�t

= −R(n+1) (5)

where R represents the right-hand side residual term R(n+1) = (F − Fv)(n+1)� + (G − Gv)(n+1)�

+ (H −Hv)(n+1)� .
The discretized Equations (5) are solved for a divergence free velocity �eld at the (n+1)

time level by introducing a pseudotime level which is denoted by the superscript (m) in the
following arti�cial compressibility relation:

@p
@�
= −�∇ · u(n+1; m+1) (6)

Iterative solution of this equation is performed so that the velocity vector u(n+1; m+1) approaches
u(n+1) as the divergence ∇ · u(n+1; m+1) approaches zero.
The delta form of the linearized, unfactored, implicit algorithm, for both steady-state and

time-accurate solutions is given by

[
Itr
J
+

(
@R
@Q

)(n+1; m)]
× (Q(n+1; m+1) −Q(n+1; m))

= −R(n+1; m) − Im
�t
(1:5Q(n+1; m) − 2Q(n) + 0:5Q(n−1))= R̂ (7)

where Itr = diag[(�t=��); 1:5; 1:5; 1:5]=�t and Im =diag[0; 1; 1; 1]. The algorithm for steady-
state solutions is obtained from Equation (7) when the internal iteration index (m) is dropped
and only the �rst term, R(n+1), is retained on the right-hand side.
Exact evaluation of the residual term Jacobian, J= @R=@Q, in the right-hand side of Equa-

tion (7) results in a banded matrix. Each entry of this banded matrix represents a vector of
4× 4 blocks which is aligned along a diagonal of the matrix. Exact evaluation of the Jacobian
J is very costly computationally, therefore, an approximate Jacobian of the �ux di�erences
is used. The resulting matrix system of linear equations is solved using a Gauss–Seidel-
relaxation method [11]. The implementation of the solution procedure is as follows. First, the
entire matrix in Equation (7) is formed and stored as the following banded matrix system:

B[UL; 0; : : : ; 0; VL; 0; : : : ; 0; DL; D;DU; 0; : : : ; 0; VU; 0; : : : ; 0; UU]�Q= R̂ (8)

where �Q=Q(n+1; m+1) − Q(n+1; m) and UL; VL; DL; D;DU; VU; UU are vectors of 4× 4 blocks
that lie on the diagonals of matrix B, with the D vector on the main diagonal. This matrix
equation is solved using an iterative approach where only one family of lines is used as the
sweep direction. The resulting tridiagonal band matrix system is solved by performing and
storing the lower–upper (LU) decomposition.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:1187–1207



1192 J. A. EKATERINARIS

The left-hand side operator [(Itr=J )+(@R=@Q)(n+1; m)] of Equation (7) can be approximately
factorized to obtain the Beam–Warming algorithm as follows:[
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(1:5Q(n+1; m) − 2Q(n) + 0:5Q(n−1))= R̂ (9)

Among the time stepping methods of Equations (4), (7), and (9) the unfactored algorithm
of Equation (7) yielded the best performance for both steady-state and time-accurate numerical
solutions.
The numerical solution with the delta form of the implicit time integration algorithms, Equa-

tions (7) and (9), essentially operates as [NUMERICS]�Q=PHYSICS. The term NUMERICS
denotes the unfactored or factorized left-hand side implicit operators of Equations (7) and (9),
while PHYSICS constitutes the evaluation of the residual term R̂. Spatial di�erencing in the
latter is performed either with fourth- or sixth-order accurate compact, centred schemes that
are summarized in the next section.

3. HIGH-ORDER SPACE DISCRETIZATION

Compact, centred high-order accurate schemes are used to evaluate the derivatives of metric
terms and the convective �uxes in the �nite-di�erence framework. The spatial derivative F′

of any scalar quantity, F, such as �ow variable, metric, or �ux component in the equally
spaced transformed plane (�; �; �) is obtained by solving the following tridiagonal system:

aF′
j−1 +F′

j + aF′
j+1 =A

Fj+1 − Fj−1
4��

+ B
Fj+2 − Fj−2

4��
(10)

where the constants A, B, and a determine the spatial order of accuracy of the scheme. The
formula of Equation (10) encompasses a family of schemes ranging in accuracy from the
standard three-point, second-order accurate explicit method (E2) to the compact �ve-point,
sixth-order accurate compact scheme (C6). The values of the coe�cients a; A; B in Equation
(10) for various schemes are given in Table I.
An extensive discussion of the resolving ability of these schemes in the wave domain can

be found in References [17, 18]. For completeness, the resolving ability of the second-order
accurate scheme (E2), the explicit fourth-order accurate scheme (E4), and the fourth- and
sixth-order accurate compact schemes (C4) and (C6), respectively, is shown in Figure 1. The
improvement in performance with compact schemes, demonstrated in Figure 1, is obtained at
a small increase in the computing cost needed for tridiagonal matrix inversion. High-resolution
computational methods based on compact schemes impacted other applications, such as direct
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Table I. Explicit and compact schemes of Equation (10).

Scheme a A B Order

E2 0 1 0 2
E4 0 4

3 − 1
3 4

C4 1
4

3
2 0 4

C6 1
3

14
9

1
9 6
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Figure 1. Wave space resolution of compact and explicit central-di�erence.

numerical simulations (DNS) [19], large eddy simulations (LES) [20] of compressible �ow,
and non-linear computational aeroacoustics (CAA).
For periodic domains, a periodic tridiagonal solver is used with Equation (10). For non-

periodic domains, one-sided compact formulas at the edges of the domain are used. For
example, the fourth-order accurate scheme at i=1 evaluates the derivatives as

6(F′)1 + 8(F′)2 = (−17F1 + 9F2 + 9F3 − F4)=(��) (11)

These stable boundary schemes for the evaluation of the derivatives with Equation (11) in
arbitrary domains have been developed and analysed in Reference [21].

3.1. Viscous term evaluation

Evaluation of the inviscid �ux terms with low-resolution spatial discretizations is the most
important source of error. However, high-resolution computations require accurate evaluation
of the viscous terms. Modi�ed wavenumber analysis, similar to the analysis presented in
Figure 1, shows that the second-order central di�erence approximation to a second deriva-
tive, @xx, is almost twice as accurate as a second-order central di�erence approximation of
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the �rst derivative @x. Therefore, many CFD codes [11], combine a third- or higher-order,
upwind-biased spatial discretization of the inviscid �uxes with a second-order accurate central-
di�erence discretization of the second derivative for the viscous �ux terms. Computations of
realistic high Reynolds number turbulent �ows require low numerical errors in the boundary
layer for the accurate prediction of drag. This is because the drag is a�ected by the balance
between the inviscid and viscous �ux terms. Furthermore, for separated and vortex dominated
�ows as well as for detached eddy simulation (DES) applications the accuracy for the viscous
terms may have a signi�cant in�uence on the �delity of the computed results.
Recently, high-order compact schemes were developed for the simultaneous calculation

of the �rst and second derivative [22]. However, for turbulent �ow calculations with the
Reynolds averaged Navier–Stokes (RANS) equations where the eddy viscosity is not constant
the viscous terms have the following general form:

@�(�tur@�u)= @�[ai; j; k@�bi; j; k] (12)

Evaluation of the derivatives in Equation (12) with repeated application of compact schemes
is possible. However, this procedure is very costly computationally. Evaluation of the deriva-
tives in Equation (12) with explicit fourth-order accurate schemes without dropping the accu-
racy at the regions near the boundaries of the domain is not possible. Therefore, half point,
fourth-order accurate explicit formulas are used for the evaluation of the inner term ai; j; k@�bi; j; k
in Equation (12). The derivative @�bi; j; k of the inner term is computed at half-node points,
k+ 1

2 , using available nodal values at k points. The value ai; j; k+1=2 is obtained using a fourth-
order accurate interpolation formula. Finally, the entire term of Equation (12) is evaluated
at integer nodal points k using the half-node points values of the term in square brackets
[ai; j; k+1=2(b�)i; j; k+1=2]. In this formulation, the metric terms are also evaluated at half-node
points either by averaging, for example (�x)i; j; k =[(�x)i; j; k + (�x)i; j; k−1]=2, or by recomputing
the metric at half points.

4. SPECTRAL-TYPE LOW-PASS FILTERS

Centred compact discretizations with Equation (10) are non-dissipative and therefore suscep-
tible to numerical instabilities resulting from the growth of high-frequency spurious modes.
These modes originate from non-linear �ow features, mesh non-uniformities, and application of
numerical boundary conditions. For well resolved, weakly non-linear �ow problems straight-
forward application of compact schemes is possible. However, numerical solutions of practical
complex �ow problems in non-trivial geometries or solutions of �ow problems with strong
non-linearities eventually develop spurious modes that destroy the solution. In order to make
the high-order accurate centred discretizations suitable to practical applications, while retaining
the improved accuracy of high-order centred schemes, implicit high-order, spectral-type, low-
pass �lters are used. Spectral-type �lters are simple and they are applied as a postprocessing
stage after each time step integration to each component p, u, v, w of the solution vector Q
separately. If a component of the solution vector Q=(p; u; v; w) is denoted by Q the �ltered
values Q̂ are obtained by

af Q̂j−1 + Q̂j + af Q̂j+1 =
N∑
n=0

an
2
(Qj+n + Qj+n) (13)
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Table II. Coe�cient of the explicit �lters of Equation (13).

Filter a0 a1 a2 a3 a4 a5

F2
(1 + 2af )

2
(1 + 2af )

2
0 0 0 0

F4
(5 + 6af )

8
(1 + 1af )

2
(−1 + 2af )

8
0 0 0

F6
(11 + 10af )

16
(15 + 34af )

32
(−3 + 6af )

16
(1 + 2af )
32

0 0

F8
(93 + 70af )

128
(7 + 18af )

16
(−7 + 14af )

32
(−7 + 14af )

16
(−1 + 2af )

128
0

F10
(193 + 126af )

256
(105 + 302af )

256
(−15 + 30af )

64
(45 + 90af )

512
(−5 + 10af )

256
(1− 2af )
512

The �lter of Equation (13) was introduced in Reference [23] and it is based on the family
of �lters proposed in Reference [17]. Proper choice of coe�cients suggested in References
[23, 24] provides a 2N th-order accurate formula on a 2N + 1 point stencil. Note that the
computed values at the end points of the domain cannot be �ltered even with the second-
order �lter which has a three point wide stencil. The N + 1 coe�cients, a0; a1; : : : ; aN , of the
�lter in Equation (13) are given for di�erent order �lters in Table II where the �rst entry
denotes the order of the �lter.
The transfer function of the �lters in Equation (13) that determines the resolution of the

�lter in wave space is given by

S(!)=
∑N

n=0 an cos(n!)
1 + 2af cos(!)

(14)

The parameter af which is in the range −0:5¡af¡0:5 determines the �ltering properties.
High values of the parameter af yield less dissipative �lters. The function of Equation (14)
for �lters of second up to eighth-order for the same value of the �ltering parameter af = 0:45
is plotted in Figure 2. The function of Equation (14) for the second-, and eighth-order �lter is
plotted in Figure 3 for di�erent values of the �ltering parameter af = 0:45–0.495. It is evident
that as the value of the �ltering parameter af becomes larger low-pass �ltering is obtained
even with the second-order �lter. Numerical experiments in Reference [24] suggest values of
the parameter af between 0.3 and 0.5 and �lter order of accuracy at least two orders higher
than the order of the basic di�erence scheme.
The �lter stencil of an eight- or tenth-order �lter, commonly used with fourth- and sixth-

order accurate compact schemes, is very large. For the points of the domain where Equa-
tion (13) cannot be applied, two approaches are suitable. The �rst approach reduces the �lter
order of accuracy upon approaching the boundary to a level for which the �ltering scheme of
Equation (13) is applicable. For example, �ltering of the points close to the boundary is ac-
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Figure 2. E�ect of �lter order of accuracy.

ω

S
 (

ω
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S2, af = 0.480
S2, af = 0.485
S2, af = 0.490
S2, af = 0.495
S8, af = 0.475
S8, af = 0.485
S8, af = 0.495

π / 4 π / 2 π3π / 2

0.99

0.995

1

π / 4 π / 2 3π / 2

Figure 3. E�ect of �ltering parameter.

complished with the second-order �lter and high values of af , while the higher-order (sixth-,
eighth-, or tenth-order) �lter is used for the interior points. The second method, described
in Reference [24], employs higher-order one-sided formulas for points close to the compu-
tational boundaries. These formulas retain the tridiagonal form of the scheme and they are
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given by

af Q̂j−1 + Q̂j + af Q̂j+1 =
11∑
n=1
an; jQn (26j65) (15)

af Q̂j−1 + Q̂j + af Q̂j+1 =
10∑
n=0
an; jQn (J max−46j6J max−1) (16)

An extensive list of the coe�cients for the higher-order, one-sided �lters at the left and
right boundary is given in Reference [25]. For the applications of this work, no signi�cant
di�erence was found between the �rst or the second approach. The �rst approach was used
in the computed solutions.

5. RESULTS

Preliminary tests of the proposed method were carried out for simple, steady �ow problems
with exact solutions, such as pipe, channel �ow, and �at plate boundary layer. Very good
agreement of the computed solution with the analytic results was obtained. Furthermore, the
reduction of error with grid re�nement demonstrated that high order of accuracy is obtained.

5.1. Cavity �ow

A classical steady-state �ow problem with well-de�ned boundary conditions is the unit square
driven-cavity �ow. This problem is often used [5, 16] to demonstrate the accuracy and ef-
�ciency of numerical methods for incompressible �ows. Numerical solutions for the driven-
cavity �ow were obtained at di�erent Reynolds numbers using periodic boundary conditions
in the spanwise direction. A comparison of the computed solution at Re=100 with the com-
putations of Reference [26] is shown in Figure 4. The agreement with the computed solution
of Ghia et al. [26], widely used for comparisons in the literature (see for example Reference
[5]), is good. The computed vorticity for the numerical solution obtained with a stretched,
101× 101 point grid, the fourth-order accurate scheme, and the eighth-order �lter are shown
in Plate 1. The computed solutions were not sensitive to the value of the �ltering parameter
af . The computed solutions for 0:40¡af¡0:49 converged to the same steady-state.
The fourth-order accurate numerical solution converged to machine accuracy in approxi-

mately 150 iterations. Analogous convergence was obtained for the solutions computed on the
same mesh for Reynolds numbers up to Re=500 with both the second-order explicit scheme
plus the fourth- or sixth-order �lter and the sixth-order accurate compact scheme plus the
eighth-order �lter. Convergence to machine zero was achieved in all cases. However, before
machine zero was reached, when the L2 norm converged at least �ve orders of magnitude and
the velocity divergence was less than 10−4 the numerical solution was practically converged
to a steady-state. The overall convergence was practically una�ected by the values of the
pseudocompressibility parameter in the range 1¡�¡5. Larger values of the pseudocompress-
ibility parameter, �≈ 5, yielded a slightly faster convergence to a steady state. In general, the
numerical solutions of the driven-cavity �ow essentially converged in approximately 120 iter-
ations for 100¡Re¡500 independently of the value of the pseudocompressibility parameter,
the value of the �ltering parameter, or the order of the scheme.
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Figure 4. Comparison of the present solution with the results of Ghia et al. [26].

5.2. Oscillating plate

The ability of the proposed numerical method to retain high order of accuracy for unsteady
incompressible �ow problems with exact solutions is demonstrated next. First, the �ow over
an in�nite oscillating plate is computed. The numerical solution initiated impulsively with zero
velocity initial condition. For this computation, 81 points distributed with simple exponential
stretching along the normal to the wall direction were used. The �ow velocity at the upper
edge of the domain, which was located approximately 20 units away from the solid wall, was
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Figure 5. Comparison of the exact result (symbols) with the computed
solution (lines) for the Stokes problem.

extrapolated from the interior. In the streamwise and spanwise directions, periodic boundary
conditions were imposed. Along the streamwise direction su�cient number of grid points were
used in order to make possible the application of the eighth-order �lter without the second-
order �lter closure for the points near the boundaries of the domain. A su�cient number of
�ow cycles was completed until a time-periodic response was reached. A comparison of the
computed velocity distribution with the exact solution at t=0, T=4, T=2, and t=3T=4 is shown
in Figure 5. The agreement with the exact solution is very good. For this simple problem, a
numerical solution was obtained using the explicit time marching scheme of Equation (4) and
the dual-time stepping of Equation (5). Filtering was applied at the end of the Runge–Kutta
cycle. The numerical solution obtained with the explicit method was in agreement with the
solution obtained with the implicit scheme.

5.3. Oseen vortex decay

The second unsteady �ow problem with an exact solution is the decay of an ideal vortex.
This problem is of interest to numerical simulations of trailing vortices, (LES) and (DES)
simulations. The initial condition for the �ow is uniform pressure and velocity distribution of
the Oseen vortex given by

v�(r; t=0)=
�
2	r

(17)

where � de�nes the strength of the vortex and r is the distance from the origin. This vortex
decays under the action of viscous forces and the velocity distribution at time t is given by
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Figure 6. Comparison of the computed (lines) and exact (symbols) velocity for a decaying vortex.

the following exact solution:

v�(r; t)=
�
2	r

[
1− exp

(
− r2

4�t

)]
(18)

The time-dependent �ow with initial condition from Equation (17) was computed using
an equally spaced, Cartesian grid with �x=�y=1 and �=10. A qualitative comparison
of the computed solution obtained using the fourth-order accurate compact scheme and the
eighth-order �lter with the exact result of Equation (18) for time T =5 is shown in Plates 2a
and 2b. The computed velocity magnitude v� and vorticity distribution are in good agreement
with the exact result.
A comparison of the computed velocity distributions with the exact result along the grid

line that passes close to the origin (at a distance d=�x=2=0:5 since the numerical mesh does
not pass through the origin where the initial velocity is singular) is shown in Figure 6. The
di�erences between the computed solution and the exact result are large at the region where
the gradients are steep. For the computation with �x=1, the vortex core, which appears to
be con�ned in the region r¡10 (see Plate 2), is represented with 20 points. The computation
with a re�ned grid in both directions where the vortex core is represented with 40 points
in each direction yielded very good agreement with the exact solution. A comparison of the
relative error at T =5 and 20 is shown in Figure 7. The error slightly increases with time
and grid re�nement in both directions reduces the error by an order of magnitude.
A sequence of meshes was used to investigate the decay of error between the exact result

and the numerical solution as the mesh is re�ned and the order of accuracy of the scheme
increases from second-order explicit to fourth- and sixth-order compact. The high-order accu-
rate solutions were computed with the eighth-order �lter. It was found that the solution is not
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Figure 8. Grid convergence of the computed solution for a decaying vortex.

sensitive to values of the �ltering parameter larger than 0.45. The �ltering parameter was set
to af = 0:475 for the second-order �lter at the boundaries of the domain and af = 0:465 for the
eighth-order �lter. The error of the solution versus grid size is shown in Figure 8. It appears
that satisfactory grid convergence is obtained for both compact schemes. Grid convergence
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is demonstrated in Figure 8 for the maximum error, or Lmax norm of the velocity at T =5.
Analogous grid-convergence properties are obtained, however, for the L2 norm. Grid conver-
gence is not altered if the norm is based on velocity magnitude or vorticity. Furthermore, the
same grid convergence is obtained for di�erent times T =10, 20 during the time-dependent
simulation.

5.4. Shear layer

It has been documented in the literature [27, 28] that unresolved numerical simulations of
incompressible �ow can produce artifacts that are called ‘spurious eddies’. In particular, the
time-dependent �ow with initial condition

u(y; t=0)= tanh(�(y − 0:25)) for y60:5

u(y; t=0)= tanh(�(0:75− y)) for y¿0:5
(19)

that represents a shear layer, where � determines the thickness of the layer, evolves into a
periodic eddy pattern when it is perturbed in the y direction. Using a sinusoidal perturbation
of the form v(x; t=0)= v′ sin(2	x) as in Reference [28], where v′ is perturbation amplitude,
the initial shear layer plus the perturbation has a converged solution that takes the form
of a regular periodic vortex street. This problem was simulated in the domain [0; 1]× [0; 1]
using a 150× 150 point grid. Periodic boundary conditions were imposed in all directions.
Because of periodicity it was possible to use the eighth-order �lter everywhere. The computed
solutions with the second- and fourth-order accurate schemes are compared in Plate 3. In both
simulations, the Reynolds number was Re=10000, the thickness parameter was �=100, and
the perturbation amplitude v′=0:05. The fourth-order accurate computation at the top of Plate
3 produced the regular periodic eddy pattern. The second-order accurate computation at the
bottom of Plate 3 produced the spurious eddy in the middle of the domain.

5.5. Airfoil �ows

Inviscid �ow solutions over a NACA-0012 airfoil at 0◦ angle of incidence were computed on
a series of numerical meshes. The far boundary of these meshes was placed 20 chord lengths
away from the airfoil surface. The coarsest mesh had 101 points on the airfoil surface and
an average grid spacing in the streamwise direction approximately 0.02. The �nest grid had
401 points on the airfoil surface and average grid spacing 0.005. In the normal direction, a
variable number of grid points was used in order to obtain cells with almost unit aspect ratio
close to the surface. The computed drag coe�cient converged towards the correct value of
zero with grid re�nement for all schemes and followed the trends demonstrated in Figure 9.
Turbulent �ows over airfoils were computed using the one-equation Spaplart–Allmaras [29]

turbulence model. The rapid convergence and e�ciency of the numerical solution for attached
and separated �ow with the highly stretched meshes required for turbulent �ow solutions
is demonstrated. Numerical solutions at di�erent angles of incidence were computed for a
NACA-0012 airfoil. A baseline, 201× 81 point, C-type grid with 140 points on the airfoil
surface was used for the convergence tests. In addition, an intermediate 301× 121 point
grid and a �ne 401× 161 point grid were used to conduct grid independence studies. The
convergence of numerical solutions based on the L2 norm of the pressure residual is shown in
Figure 10. Fully attached �ows (
=5:0◦ and 8:0◦) on the baseline grid converged to machine
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accuracy in approximately 500 iterations. The onset of �ow separation at 
=10:0◦ delayed
convergence. Convergence was seriously delayed for massively separated �ow at 
=12:0◦ and
with the use of �ne grids. The computed �ow�elds at 
=10:0◦ and 
=12:0◦ are shown in
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Plates 4a and 4b. The computed surface pressure coe�cients for di�erent angles of incidence
are plotted in Figure 11. Grid independent solution, in terms of the computed surface pressure
distributions, velocity pro�les and skin friction, was obtained for the solutions at 
=10:0◦

with the �ne and the intermediate grid. The computed integrated loads also showed grid-
convergence analogous to the convergence observed for the inviscid �ow calculations.

5.6. Square duct �ow

The �ow through a square duct with a 90◦ bend was used as the �nal steady-state, three-
dimensional test case. The Reynolds number, based on the duct side D=1 and average in�ow
velocity was ReD=790. At the in�ow a uniform �ow velocity was prescribed and the pressure
was extrapolated from the interior. The straight in�ow section before the bend was set to a
length of 40 units. The out�ow after the bend was also 40 units long. The computational mesh
and the computed �ow�eld is shown in Plate 5. The mesh is shown for the inner plane of the
bend. The outer plane of the bend shows the pressure variation in the streamwise direction.
The planes along the streamwise direction show the pressure variation in each section. The
recirculation region in each section is indicated with the low pressure area. Numerical solutions
were performed in a series of meshes with 21× 21, 41× 41, 61× 61, and 81× 81, points in
each cross section. The velocities with the fourth-order accurate scheme for solutions obtained
with 61× 61 and 81× 81 were identical. The computed velocities at the symmetry plane are
compared with the experimental measurements of Humphrey et al. [30] in Figures 12a and
12b. The velocity distribution at �=60◦ (see Figure 12a) computed with the fourth-order
accurate scheme is in better agreement with the experiment. Similar trends are observed in
Figure 12b for the computed velocity distribution at �=90◦. The recirculating �ow at �=30◦

and �=60◦ is shown in Plates 6a and 6b.
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Figure 12. Comparison of the computed velocity with a 41× 41 point grid
with the measurements of Humphrey et al. [30].

6. CONCLUSIONS

A high-order-accurate method for computations of incompressible �ows in complex domains
was presented. This method is based on the arti�cial compressibility formulation of the in-
compressible Navier–Stokes equations. It performs centred discretization of the convective and
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viscous �uxes. For the non-linear convective �uxes, fourth- or sixth-order accuracy is obtained
using compact schemes. The viscous �uxes are computed using explicit, centred fourth-order
accurate �nite di�erences. Time marching to steady-state or time-accurate numerical solutions
are obtained with implicit, dual-time-step algorithms. Spectral-type, low-pass �lters are used
to postprocess the solution vector and remove unresolved spurious modes resulting from the
dissipation free centred spatial discretization. The performance of the proposed method was
evaluated for simple and more complex �ow problems. For simple problems, high-order accu-
racy was demonstrated. High-order accuracy was retained for complex �ow problems where
fast convergence to steady-state was achieved and grid-independent solutions were obtained.

ACKNOWLEDGEMENTS

The author gratefully acknowledges the European Commission Research Directorate-General contract
ENK6-CT-2001-00503 KNOW-BLADE, which supported this research.

REFERENCES

1. Chorin AJ. Numerical solution of the Navier–Stokes equations. Mathematics of Computation 1968; 22:
745–762.

2. Kim J, Moin P. Application of a fractional time-step method to incompressible Navier–Stokes equations. Journal
of Computational Physics 1985; 59:308–323.

3. Rosenfeld M, Kwak D, Vinokur M. A fractional step solution method for the unsteady incompressible Navier–
Stokes equations in generalized coordinate systems. Journal of Computational Physics 1991; 94:102–137.

4. Harlow FH, Welch JE. Numerical calculation of time-dependent viscous incompressible �ows with free surface.
Physics of Fluids 1965; 8:2182–2189.

5. Jordan SA. An e�cient fractional-step technique for unsteady incompressible �ows using a semi-staggered grid
strategy. Journal of Computational Physics 1996; 127:218–225.

6. Patera AT. A spectral element method for �uid dynamics: laminar �ow in a channel expansion. Journal of
Computational Physics 1984; 54:468–488.

7. Karniadakis GE, Israeli M, Orszag SA. High-order splitting methods for the incompressible Navier–Stokes
equations. Journal of Computational Physics 1996; 127:218–225.

8. Chorin AJ. Numerical methods for solving incompressible, viscous �ow problems. Journal of Computational
Physics 1967; 2:12–26.

9. Merkle CL, Athavale M. Time-accurate unsteady incompressible �ow algorithm based on arti�cial
compressibility. AIAA Paper 87-1137, 1987.

10. Ekaterinaris JA. Performance of high-order accurate low-di�usion numerical schemes for compressible �ow.
AIAA Paper 2003-3539 2004; 42(3):493–500.

11. Ekaterinaris JA. Numerical simulation of incompressible two-blade rotor �ow�elds. AIAA Journal of Propulsion
and Power 1998; 14:367–374.

12. Rogers SE, Kwak D, Kiris C. Steady and unsteady solutions of the incompressible Navier–Stokes equations.
AIAA Journal 1991; 29:603–610.

13. Cockburn B, Shu C-W. The Runge–Kutta discontinuous Galerkin method for conservation laws. Journal of
Computational Physics 1998; 141(2):199–224.

14. Fyfe DJ. Economical evaluation of Runge–Kutta formulae. Mathematics of Computation 1966; 20:392–398.
15. Venkatakrishnan V, Mavriplis DJ. Implicit method for the computation of unsteady �ows on unstructured grids.

Journal of Computational Physics 1996; 127:380–397.
16. Drikakis D, Iliev OP, Vassileva DP. A nonlinear multigrid method for the three-dimensional incompressible

Navier–Stokes equations. Journal of Computational Physics 1998; 146:301–321.
17. Lele SK. Compact �nite di�erence schemes with spectral-like resolution. Journal of Computational Physics

1992; 103(1):16–42.
18. Ekaterinaris JA. Implicit high-order accurate in space algorithms for the Navier–Stokes equations. AIAA Journal

2000; 38(6):1594–1602.
19. Rizzetta DP, Visbal MR. Application of large-eddy simulation to supersonic compression ramps. AIAA Journal

2002; 40(8):1574–1581.
20. Garnier E, Sagaut M, Deville M. A class of explicit ENO �lters with application to unsteady �ows. Journal of

Computational Physics 1993; 180(1):184–204.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:1187–1207



Plate 1. Computed �ow�eld in the unit square driven-cavity shown by vorticity contours.
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Plate 2. (a) Comparison of the computed and exact vorticity �eld for a decaying vortex. (b) Comparison
of the computed and exact total velocity �eld for a decaying vortex.
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Plate 3. Comparison of the computed vorticity �eld for the solutions obtained with
second- and fourth-order accurate schemes.
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Plate 4. (a) Computed �ow�eld at 
=10◦ and Re=2:0× 106. (b) Computed
�ow�eld at 
=12◦ and Re=2:0× 106.
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Plate 5. Computational mesh and pressure �eld at the bend.

Plate 6. Computed �ow�eld structure at �=30◦ and 60◦ shown by vorticity �eld and velocity vectors.
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